Women in AI is a biweekly podcast from RE•WORK, meeting with leading female minds in AI, Deep Learning and Machine Learning. We will speak to CEOs, CTOs, Data Scientists, Engineers, Researchers and Industry Professionals to learn about their cutting edge work and advances, as well as their impact on AI and their place in the industry.
Our guest this week is Dawn Harpster, Senior Conversation Architect at Talkdesk. Dawn is actively committed to the extinction of bad IVR and Virtual Agent experiences. Her passion for the nuances of human behavior, conversation, and technology lead her to a career in human to machine interaction design; evangelizing simplicity, clarity and great user experience. Dawn has worked with a variety of high profile clients including Apple, Alaska Airlines, Direct TV and Western Union. She has also worked as a TV engineer, writer/producer, a program director at a homeless shelter and a professional jouster.
Topics discussed include:
• What and where Conversational AI is
• Conversation design principles
• Challenges and opportunities of being a woman working in AI
Links:
• LinkedIn Profile: https://www.linkedin.com/in/dawn-harpster-4b3130b/
• Women in AI Blogs: https://blog.re-work.co/tag/women-in-ai/
Our guest this week is Jen Wang, Senior Manager of Data Science at Wayfair. Jen joined the Wayfair team in 2016 and leads multiple teams of data scientists that develop customer-scoring, uplift modeling, and reinforcement learning systems to optimize marketing decisions at Wayfair. Prior to this she received her Ph.D. in Biophysical Chemistry from the University of Iowa, where she researched cancer-related drug development.
Topics discussed include:
• Starting a career in AI
• Academia vs Industry
• Workplace changes due to COVID-19
• Advice for a career in STEM
• Female role-models
Links:
• LinkedIn Profile: https://www.linkedin.com/in/jenzhenwang/
• Women in AI Blogs: https://blog.re-work.co/tag/women-in-ai/
Our guest this week is Merav Yuravlivker, the Co-Founder and CEO of Data Society, a company passionate about increasing data literacy on a global scale so that organizations and their employees can be smarter about data. Since starting Data Society in 2014, Merav has empowered thousands of professionals with new data science skills, and is dedicated to giving others the tools to approach problems strategically and build a community to answer the question "How can data science change the world?".
Topics explored include:
• Breaking down barriers in education
• Increasing diversity in Data Science
• A data-driven culture
• Trends in the world of Data
• Data literacy
Links:
• LinkedIn Profile: https://www.linkedin.com/in/meravyuravlivker/
• Data Society: https://datasociety.com/
Our guest this week is Mari Joller, Founder and CEO of Snackable AI, a content discovery engine for the audio-first world. Mari has worked in the audio ecosystem for a number of years, including founding her previous startup Scarlet, as well as building and scaling products at Virgin Mobile and Nokia. Audio content is on the rise. What role does artificial intelligence have to play?
Topics explored include:
• The shift in NLP and conversational and speech based technologies to becoming more mainstream
• The process of using AI to add structure and metadata into spoken word content
• Challenges faced when building the product
• The future of voice-based technology in the AI space and in the wider business context
• The changing landscape of how people consume and digest content
Links:
• LinkedIn Profile: https://www.linkedin.com/in/marijoller/
• View more content on AI & Marketing in the video playlist here: https://bit.ly/2TbuAvN
This week we're joined by Ritika Gunnar, VP of Data & AI Expert Labs at IBM. Ritika is one of IBM’s leading voices on trustworthy AI. Her team helps organizations embed principles and tools that build trust across the AI lifecycle, from preparing the data and building the model to deploying and managing it in real-time. As AI infiltrates almost every aspect of our lives, the lack of trust has never been a more pressing issue.
Topics explored in the conversation include:
• COVID-19 and a shift in the importance of trust;
• The challenge of trust from a technology, education, management and culture perspective;
• Ensuring explainable plus trustworthy AI;
• The challenges of deploying models both responsibly and at scale;
• Starting a career in AI;
• COVID-19 and the impact of women in AI
Links:
• LinkedIn Profile: https://www.linkedin.com/in/ritika-gunnar-4b4542/
• Upcoming events on Responsible AI & Trust: https://www.re-work.co/events/topics/ai-for-good
This week's guest is Rachel Alexander, CEO and founder of Omina Technologies, an AI company dedicated to ethical AI solutions. Rachel is responsible for the technological vision and strategy of Omina Technologies and recently won the award for ‘Artificial Intelligence Person of the Year’ in Belgium, where she has lived and worked for the past twenty years, devoting herself to helping companies navigate new technological advances and incorporating them into their strategy.
Topics explored in the conversation include:
• What does ethical and trustworthy AI mean to you?
• Why should companies should invest in ethical and trustworthy AI?
• How can we ensure AI is accessible to all?
• What is the biggest challenge faced by organisations regarding explainable AI?
• How do different industries differ in working towards explainable AI?
• Has COVID had an impact on accelerating or hindering ethical and trustworthy AI?
Links:
• LinkedIn profile: https://www.linkedin.com/in/rachelalexander777/
• Omina Technologies: http://ominatechnologies.com/
• View upcoming events on Ethics here.
This episode features Lucy Vasserman, Staff Software Engineer at Google. Lucy leads the Conversation AI team within Google's Jigsaw, which studies how computers can learn to understand the nuances and context of abusive language at scale. More specifically, Lucy works on machine learning research to improve core models, which power the Perspective API, with a focus on combating algorithmic bias. She also collaborates with internal and external users to ensure the Conversation AI models capture their needs.
Topics explored include:
• Computer Science Careers
• Conversational AI
• Algorithmic Bias
• Ethical AI
• Fair & Safe Technology
• Large Language Models
Links:
• LinkedIn profile
• Perspective API:https://www.perspectiveapi.com/
• The Current: https://jigsaw.google.com/the-current/toxicity/
• View upcoming events here
This episode features Natasha Jaques, Research Scientist at Google. Natasha Jaques recently finished her PhD at MIT, which focused on improving the social and affective intelligence of deep learning and deep reinforcement learning. She is now a Research Scientist at Google Brain and Berkeley working with Sergey Levine and Doug Eck.
Topics explored include:
• Social Reinforcement Learning
• Multi-Agent RL Algorithms
• PAIRED
• Deep Reinforcement Learning
• Applications of Reinforcement Learning
• The future of Reinforcement Learning
• Computer Science Careers
View the video edition here!
Links:
• LinkedIn profile: https://www.linkedin.com/in/natashajaques
• Twitter profile: https://twitter.com/natashajaques
• Video edition: https://youtu.be/_gLU5Uw4TWU
• View upcoming events here: https://www.re-work.co/
This episode features Susanna Dillenbeck, Commercial Partnerships Manager at Furhat Robotics, a startup based in Sweden, with a mission to enable a revolution in human-computer interaction through social and conversational robotics. Susanna focuses on creating collaborations to help them bring more applications to life on the Furhat platform.
Topics explored included:
• The meaning of Conversational AI and Social Robotics
• The positive impact of Social Robots for businesses and society
• The challenges faced with Social Robotics
• Gender and Social Robotics
• The issue of being emotionally connected to machines
• The future of emotion AI
• Women in AI challenges
• Advice for women in AI coming from a non-technical background
Links:
• LinkedIn Profile: https://www.linkedin.com/in/susanna-dillenbeck/
• View upcoming events on Conversational AI here: https://www.re-work.co/events
• Read the transcript in full here: https://blog.re-work.co/social-robotics-and-conversational-ai-with-susanna-dillenbeck
This week's guest is Tamanna Haque, Senior Data Scientist at a global automotive company. Her focus is to couple analytics and AI to support intelligent driving, and to apply AI to create new products and services, improve customer experiences, streamline operations and update business strategy.
Topics explored included:
• Can you give us an overview of your work in AI?
• How can data science, modelling and forecasting techniques be applied to assist to a shift to a shorter-term focus on insights & business strategy?
• What are the main organisational challenges in shifting to a shorter-term strategy?
• What's the connection between AI vs Analytics, and where do the lines perhaps blur?
• Why is the representation of women so important in data science and how businesses can improve this?
• What impact has COVID-19 had on Women in AI/DS, over the past 12 months?
• Do you have any role-models or women in the sector that have inspired you in your career?
• What would be your tips to anyone wanting to start working in AI, or develop their career?
Links:
• LinkedIn Profile: https://www.linkedin.com/in/tamannah1/
This week’s guest is Myrna MacGregor. Myrna Macgregor leads BBC thinking on responsible AI/Machine Learning. She is focused on developing the right tools and resources to incorporate the BBC’s values and mission into the technology it builds. As a public policy specialist, she is particularly interested in work on AI/ML fairness, transparency, and accountability.
Here are the questions we asked Myrna:
1. Can you tell us a bit more about yourself and your current role at the BBC?
What led you here?
2. Can you please share a bit more about your background and career journey?
3. Can you tell us a little more about how you started building the BBC’s own framework (the Machine Learning Engine Principles and Checklist) and how you identified the tenets that needed to be considered in terms of promoting the Responsible use of AI?
4. What are the challenges of turning ethical principles into practice?
5. If you could share any tips or tricks for anyone starting out their careers within the field of AI and in particular, who has an interest in supporting the responsible development of technology, what would it be?
6. Where can our listeners keep up with you?
Watch the YouTube video of the podcast here.
Links:
• LinkedIn Profile: https://www.linkedin.com/in/myrna-macgregor-17759b144/
View additional videos on Explainable AI in the playlist here.
This week's guest is Alisha Arora is an ambitious 14-year-old on a mission to leverage exponential technology to solve some of the world’s largest problems. She is an advocate for mental health and is currently researching at MIT’s AI lab to diagnose and prevent suicide with machine learning. She has also founded her own non-profit organization, The HopeSisters, with a mission to support children in foster care which has gained recognition across global media.
Topics explored in the podcast include:
• As a teen why does mental health matter to you?
• Why do you think machine learning is the solution?
• How did you get involved with Machine Learning?
• Why should youth start getting involved with machine learning right now?
• Do you think Governments and Educational Institutions are providing enough information about AI as a potential area for work to young people just now?
• What advice would you give someone young who wants to start getting into AI?
• As a youth, what do you think is the potential of AI in the future?
• How do you overcome challenges when building ML models?
• Why should more people get involved with AI and mental health?
Links:
• The HopeSisters: https://www.thehopesisters.com
• LinkedIn Profile: https://www.linkedin.com/in/alishaarora56/
Watch the YouTube video of the podcast here.
View all upcoming events here, including the AI in Healthcare & Pharma Virtual Summit taking place in March 2021.
This week's guest is Juliet Waters, Chief Knowledge Officer at Kids Code Jeunesse, a Canadian charity with a mission to give every Canadian child access to digital skills education, with a focus on girls and underserved communities. KCJ teaches kids and their educators about topics including algorithm literacy and artificial intelligence, and how these integrate with the UN’s Sustainable Development Goals to give kids the confidence and creative tools they need to build a better future.
Topics explored in the podcast include:
• You recently launched the #kids2030 Challenge, to encourage kids to use data science to address plastic pollution. What has the response been to the challenge so far?
• Can you share more about the reasons behind The Algorithm Literacy Project and its goals?
• What has the response been from adults, parents and teachers?
• Have there been any challenges?
• Do kids often show more interest in pursuing a career in AI after being involved in your work?
• How has COVID19 impacted KCJ?
• What are your thoughts on the challenges faced by women as AI practitioners?
If you're keen to learn more about Kids Code Jeunesse and The Algorithm Literacy Project then please do check out the links below.
Links:
• Kids Code Jeunesse: https://kidscodejeunesse.org.
• The Algorithm Literacy Project: https://algorithmliteracy.org/
This week's podcast is sponsored by our partner GSI Technology, and our guest this week is their Lead AI Scientist, Daphna Idelson. Daphna has a Computer Engineering degree from the Technion Israel Institute of Technology and extensive industry experience in specialized video processing, deep learning algorithms, CNN, distance metric learning, and large-scale similarity search.
At GSI Technology, Daphna applies her expertise to ground-breaking power/performance solutions with the Gemini Technology and Associative Processing Unit.
Topics explored in the podcast include:
• Can you explain a bit about your current research focus?
• Can you give an overview of your recent findings in accelerating Similarity Search?
• What are the next steps for this research area?
• Can you share an overview of your recent experience in taking part in a Radar Spectrogram Classification challenge hosted by the Israeli Ministry of Defense R&D directorate?
• What are your predictions for advancements in CV and Image Processing?
• What prompted you to begin a career in AI?
• What advice would you give to anyone looking to get into a career in AI?
• What challenges have you faced as a woman working in AI?
• Have role models been a factor in your career?
Read the transcript here.
Founded in 1995, GSI Technology, Inc. is a leading provider of semiconductor memory solutions. GSI's resources are focused on new products that leverage the strengths of its market-leading SRAM business. The Company recently launched radiation-hardened memory products for extreme environments and the Gemini APU, a memory-centric associative processing unit designed to deliver performance advantages for diverse AI applications. The APU's architecture features massive parallel data processing with two million-bit processors per chip. The massive in-memory processing reduces computation time from minutes to milliseconds, even nanoseconds, while significantly reducing power consumption with a scalable format. Headquartered in Sunnyvale, California, GSI Technology has 172 employees, 114 engineers, and 92 granted patents.
Learn more about GSI Technology and their advancements via https://www.gsitechnology.com/APU.
Our guest this week is Avriel Epps Darling, researcher, entrepreneur and artist, and currently, a PhD student at Harvard's Graduate School of Education, seeking to make meaningful impact through researching how online, machine learning-driven ecologies influence youth of colour as they construct and affirm racialized and gendered identities.
Avriel has received numerous awards and honours including an invitation from the U.S. Department of Education to present her work for Congress as well as recognition as part of the top 10% of undergraduate social scientists in the world. Today, her research, in partnership with organizations such as Spotify and Snap Inc, focuses on the intersection of algorithmic bias in content recommendation systems, and racial identity development.
Topics explored included:
• Can you share more about your current research focus to start with?
• In your paper on Artist Gender Representation in Music Streaming, your findings show that about 1 in 5 streams go to female artists. How have music recommendations influenced this?
• What is the role of streaming services for challenging inequities by spotlighting underrepresented artists in their recommendations?
• Can you share more about your findings when researching the relationship between the proportion of female artists streamed on programmed playlists and the proportion of female artists listened to organically. And how this is impacted by the user gender and age?
• Can you share more on the challenges of gender labelling?
the challenges of gender labelling?
• What are the next steps for this research area?
• Has your background influenced your academic research?
• What advice would you give to anyone looking to get into a career in AI currently?
Inspired to explore further? View our upcoming event on Ethics & Social Responsibility here.
Our guest this week is Madhurima Khandelwal, Vice President and Head of American Express AI Labs within Enterprise Digital & Analytics, with her team based in Bangalore and New York. In this role, she leads the charter to build and drive state-of-the-art AI capabilities and solutions to solve high-impact and complex business problems for the enterprise.
Madhurima is a flagbearer of Inclusion & Diversity for Amex and is passionate about creating a culture of inclusiveness and empowerment for all her colleagues.
Topics explored included:
• Can you share more about the course of your career at Amex and your progression to this current role?
• What are you currently working on at Amex AI Labs and how does Amex use AI & ML?
• What does a typical working day look like for you?
• How has COVID-19 changed the dynamic of work for you?
• What have been the most important things for you in your career progression?
• How have you created a culture of inclusiveness at Amex? Can you tell us more about your work in this area and what it means to you?
• What are your thoughts on the challenges faced by women as AI practitioners?
Read the transcript here.
View all our upcoming Women in AI events here.
Inspired to hear more? Recap interviews and presentations from inspiring Women in AI on the AI Library here.
You can connect with Madhurima via LinkedIn.
This week's podcast is a discussion with Diana Murgulet who is a Data Scientist at QuantumBlack. QuantumBlack is an advanced analytics firm operating at the intersection of strategy, technology and design to improve performance outcomes for organisations.
Diana has a background in Computer Science and Machine Learning. She is passionate about education, AI for Social Good and making tech more inclusive.
Topics explored included:
• Can you share more about your route getting into AI?
• What was your experience of starting out your career in your first roles, and your initial job hunt?
• Have you come across imposter syndrome and what advice would you give to anyone struggling with it?
• How important is giving back to the community, especially mentoring women at the beginning of their career in AI?
• Have role-models been a vital part of your career?
• What does a typical working day look like for you? And which industries and topics are you currently focusing on?
• What are your thoughts on the challenges faced by women as AI practitioners?
• How has COVID-19 changed the dynamic of work for you?
Read the transcript here.
View all our upcoming Women in AI events here.
You can connect with Diana via LinkedIn.
This week's guest is Rosana de Oliveira Gomes, Lead Machine Learning Engineer at Omdena. Omdena is a global platform bridging mission-driven organizations with AI engineers, data scientists, and experts from diverse backgrounds to solve real-world problems.
Rosana started her career as an Astrophysicist but is now transitioning into Artificial Intelligence for social good, applying her knowledge into the nonprofit and humanitarian sector, on projects including AI for cyclone response and preventing online violence against children.
Topics explored included:
* What does AI for social impact mean to you?
* What are some of the most urgent social challenges faced by humanity that AI can help tackle?
* Can you share more about your story on transitioning from Astrophysics into the AI for social good space?
* What skills can be transferred from academia into the field of AI?
* What are the key challenges you have come across when practising AI for social good?
* How can enterprises and companies best engage in AI for social good?
* How do you think COVID-19 has impacted the AI for good space?
* What advice would you give to someone looking to change their career?
* What are your thoughts on the challenges faced by women as AI practitioners?
Read the transcript here.
Explore hours of AI for Good content on our AI Library.
You can connect with Rosana via LinkedIn.
This week I had the pleasure of chatting with Paige Dickie, Head of AI at Layer 6. Paige began her career in management consulting, working across topics from data strategy, to digital transformation. More recently, Paige worked at the Vector Institute for Artificial Intelligence, where she leads initiatives with Canada's largest financial institutions, consulting companies, regulators, and government agencies, before joining TD's Layer 6 AI earlier this year.
At Layer 6, Paige is globally responsible for the end-to-end workflow and lifecycle of all use-cases across the bank. In this episode, hear more about Paige's journey into AI, the role models that have helped along the way, as well as her advice for people starting in the field.
Topics explored include:
- The Exciting Potential for AI in the Future
- Canada's Contribution to AI, the Institutes and Its Influential Thinkers
- A Day in the Life for Paige at Layer 6
- The Integration Between Layer 6 and the Bank
- Advice for Beginners Entering Their AI Career
- AI for Social Good & Ethics, and What Social Benefits Can It Enable?
- Tips for Women in AI and Role Models
Read the transcript here.
If you're keen to boost your AI knowledge, sign up for a free trial of our AI Library, with over 500 hours of AI video content available.
You can connect with Paige via LinkedIn.
This week I had the pleasure of chatting with Valeria Cortez, Senior Data Scientist at Monzo Until recently, she worked on the development of Machine Learning solutions at Lloyds Banking Group. During this time, she focused on building tools and processes to detect and mitigate bias in Machine Learning models.
Valeria is a strong advocate of ethics and responsibility in AI as well as bringing more diversity into tech teams. In September 2020, Valeria will be presenting a talk at the upcoming AI in Finance Virtual Summit, on her recent work in ML applications in banking. It was fantastic to hear more about Valeria's journey into AI, her recent move from old to new banking, and the challenges of bringing more diversity into tech teams.
You can connect with Valeria via LinkedIn and follow her on twitter @ValeriaCortezVD.
This week I had the pleasure of chatting with Shaloo Garg, MD of Microsoft for Startups Silicon Valley, a programme that provides startups with the resources to get their product off the ground. Throughout her career, Shaloo has also been a fantastic advocate for women in technology and is currently a 'Champion of Innovation' at UN Women. There, she works with Universities leveraging emerging technologies to encourage digital literacy in developing countries for young girls who don't currently have access to education.
Shaloo strongly believes that technology’s best use case is its power to impact wider social issues like hunger, poverty and STEM education. I had the pleasure of first working with Shaoo at our AI for Good Summit in San Francisco only last year. We've also been collaborating over the past few weeks on some exciting projects for later this year, so it's been fantastic to catch up to hear more about Shaloo's current work, as well as finding out what motivates her every day.
Read the podcast transcript here.
Topics explored in the podcast include:
• What is the biggest opportunity for both startups and enterprises to leverage each other?
• How do you think the landscape has changed in the last few months given the global pandemic?
• How would you define digital transformation and the role of AI in it?
• What is your view on the opportunities that lie ahead for AI startups especially in the 'AI for Good' space?
• Why should large enterprises work with startups?
• What is your advice to aspiring entrepreneurs who want to work with large enterprises like Microsoft?
You can connect with Shaloo via LinkedIn, and follow her on twitter @shalsgarg.
We had the pleasure of speaking with Emily Bailey, Data Science Manager at Uber who is now leading Data Science for Uber’s loyalty and subscription products. Emily discusses the glass ceiling in the working world for women and shares her advice and personal experience of the steps taken in her journey into Data Science.
It was great to hear about the work going on in the Data Science department at Uber and we can’t wait to see what’s in store for Emily in the next few years.
Read the podcast transcript here.
You can find more information on Emily’s role model, Fran Bell here.
Topics explored included:
* COVID Recovery Strategy
* Large Scale Business Forecasting
* Successes and Failures within the Business
* Model Modification
* Female Role Models
* Management Strategies
* Women in Data Group at Uber
You can connect with Emily via LinkedIn.
This week we chat with Claire Calmejane, Chief Innovation Officer at Société Générale, one of Europe's leading financial services groups. Throughout her career, Claire has also been a fantastic advocate for women in technology, as well as providing support to the startup community in the UK and France.
I had the pleasure of first working with Claire a couple of years ago at our AI in Finance Summit in London, so it was great to hear more about the work she's been doing in digital transformation and innovation since then, especially the challenges and opportunities that have arisen due to the current global pandemic.
Read the podcast transcript here.
Topics explored included:
* What’s it like to lead innovation at Société Générale? What does your job role require of you?
* What impact has the current pandemic had on your role?
* What role will innovation play in the current COVID-19 world?
* Has COVID-19 accelerated the implementation of new trends and transformations in the financial services sector?
* What would you say you look for as key qualities when hiring? What advice would you give to those listening who are looking to move into a tech career?
You can connect with Claire via LinkedIn, and follow her on twitter @ccalmeja.
This week we chat with Branka Panic, Founder & CEO of AI for Peace, A not for profit organization, focused on studying & understanding the impacts of AI on society. Their vision is a future in which AI benefits peace, security and sustainable development, and where diverse voices influence the creation of AI and related technologies.
I had the pleasure of meeting Branka at our Women in AI dinner in San Francisco earlier this year, so it was great to hear more about the fascinating work she's been doing since then, especially their current work on the role of the AI community fighting the COVID19 global pandemic.
Topics explored included:
* Why should more people get involved in the AI for Good movement?
* Given the current COVID-19 pandemic, how is peace related to pandemics & how is AI for Peace engaged in responding to the crisis?
* What excites you the most about this field and for those listeners who want to advance their careers in AI, what should they be doing right now?
You can connect with Branka via LinkedIn, and follow her on twitter @Branka2Panic.
This week we chat with Wendy Gonzalez, CEO at Sama, discussing high-quality data training and fighting AI Bias.
Topics discussed include:
* How do you see AI/Data Science as a tool which can facilitate growth in low-income communities?
* Does the concept of rapid AI development concern you from a privacy standpoint?
* How can we ensure that our quest for AI improvement also ensures societal benefit?
Wendy Gonzalez has over 20 years of experience in building excellence in technology, teams, and operations. Founded over a decade ago, 25% of the Fortune 50 rely on Sama’s trusted platform for expert, ethical training data. Watch a presentation from Sama at our Deep Learning Summit in San Francisco here.
You can connect with Wendy via LinkedIn.
This week we chat with Rana el Kaliouby, Co-Founder & CEO of Affectiva, an MIT Media Lab spin-off, and the pioneer in Emotion AI. Rana has been recognized on Fortune’s 40 Under 40, as well as RE•WORK's Top 30 Women in AI list in 2019. Rana holds a PhD from the University of Cambridge and a Post Doctorate at MIT. We've been very lucky to have Rana as an advocate of our work in Women in AI over the past few years. You can read more about the launch of Rana's new book Girl Decoded here and our directory of over 250 Influential Women Advancing AI in 2020 here.
Topics explored include:
* Latest Work at Affectiva
* The Challenges when writing Girl Decoded
* The Future of Telemedicine
* Entry strategies into ML & AI
You can connect with Rana via LinkedIn, and follow her on twitter @kaliouby.
This week we chat with Erin Gustafson, Senior Data Scientist at Duolingo - recognised as one of our list of 30 influential women advancing AI in 2019! Erin gained her PhD in Linguistics with a specialisation in Cognitive Science from Northwestern University, Illinois, in 2016. Erin’s role mainly focusses on developing metrics, data-driven decision making and forecasting user and revenue growth. She has experience working in Growth and Monetization, where she applies her statistics and ML skills to improving user/product understanding and making data-informed recommendations on future product development. You can see our list of 30 influential women advancing AI in 2019 here.
This weeks episode is kindly sponsored by Manning Publications, your go-to for technology reading! On this week’s episode, we’re speaking with Cornelia Davies, CTO at Weaveworks and Author of Cloud Native Patterns. Cornelia was recognised as one of the Top 10 Women in Cloud by CLOUDnow & also offers mentorship at GirlswhoCode.com. Her expertise in Cloud Computing has led to her book, Cloud Native Patterns which you can hear more about in our conversation.
“This book fills a gap between theory and practice… entertaining and educational.”
With the discount code podwomenai20 which you can also find in the description, you can get a fantastic discount on not only Cloud Native Patterns but for all products in any format at Manning.com. We are also offering 5 free eBook codes so please get in touch if you’d like to claim one at [email protected]!
A really interesting conversation took place in San Francisco in January with Michela Paganini, a Postdoctoral Researcher working at Facebook AI Research (FAIR) who has a background in physics and discusses how this has given her a different way of thinking about AI from a scientific standpoint. Michela joined FAIR in 2018 after earning her Ph.D. in particle physics from Yale University. Her current work is looking into making current AI models simpler and faster to compute on modern hardware architectures while connecting emergent behavior in constrained networks to theoretical predictions. During her graduate studies, she worked on the design, development, and deployment of deep learning algorithms for the ATLAS experiment at CERN with a focus on computer vision and generative modeling.
We’ve just released a number of webinars taking place over the coming weeks and months, you can find our upcoming event schedule here.
Between infancy and adulthood, the number of synapses in our brain first multiply and then fall. Despite losing 50% of all synapses between the age of two and ten, the brain continues to function. We’re joined for a second time on our podcast series by the wonderful Sara Hooker from Google Brain who’s talk with us at the Deep Learning Summit in San Francisco focused on ’What does a pruned deep neural network ’forget?” Sara’s main interests gravitate towards interpretability, predictive uncertainty, model compression and security. We also took to Twitter and asked Sara some questions that were asked by her followers - follow her on Twitter @sarahookr to ask her your own burning questions.
As part of our Ethics panel during the San Francisco Deep Learning Summit, we were joined by Irina Raicu. It was a pleasure to speak with Irina about the societal challenges & ethical issues which present themselves online. Irina is the Director of the Internet Ethics Program at the Markkula Centre for Applied Ethics. Formerly an attorney in private practice, her work addresses a wide variety of issues, ranging from online privacy to net neutrality, from data ethics to social media’s impact on friendship and family. She tweets at @IEthics and is the primary contributor to the blog Internet Ethics: Views from Silicon Valley. Interested to hear more content from both Women in AI and also from our technical summit speakers? You can register for our newsletter here.
We were delighted to speak with Dr. Shalini Ghosh with a focus on Multi-Modal Video Content Analysis for Content Recommendation focusing on the problems that this can have, e.g. Visual Dialog, Object Detection, Scene Understanding, Content Recommendation. Dr. Ghosh is a principal scientist and leader of the machine learning research at the visual display intelligence lab of Samsung Research America. She also has a Ph.D. in Computer Engineering from the University of Texas at Austin. Interested to hear more content from both Women in AI and also from our technical summit speakers? You can register for our newsletter here.
Dr Katja Hofmann is a Senior Researcher at the Machine Intelligence and Perception group at Microsoft Research Cambridge. Her research focuses on reinforcement learning with applications in video games, as she believes that games will drive a transformation of how people interact with AI technology. She is the research lead of Project Malmo, which uses the popular game Minecraft as an experimentation platform for developing intelligent technology. Her long-term goal is to develop AI systems that learn to collaborate with people, to empower their users and help solve complex real-world problems.
Interested to hear more content from both Women in AI and also from our technical summit speakers? You can register for our newsletter here.
Dominique is a lawyer, with a law Master’s degree of UofMontreal on Regulating Robo-Advisers, published in the Banking and Finance Law Review. She is currently practising law as in-house counsel of National Bank of Canada, where she leads Legal AI initiatives and is currently working on implementing an AI governance framework. Outside her work for the Bank, she is also a collaborator of Fin-ML, where she gives workshops on legal and ethical accountability of AI in finance to graduate students and professionals. She is also one of the co-authors of the Discussion paper Responsible AI : A Global Policy Framework by ITechLaw.
Interested in hearing more on financial law and ethical guidelines of using AI in Finance and Insurance? Join the London AI Finance Summit next month! See more here.
Alexia is a research scientist in statistics and artificial intelligence (AI). Her main research interests are Generative Adversarial Networks (GANs), deep learning, and large-scale gene-by-environment models. Her academic and professional background is in statistics. She started pursuing the study of AI in 2017 on her own. In 2017, she released the Meow Generator, a model that generates pictures of cats. In 2018, she wrote two sole-author papers on GANs, one of which has become highly influential (See “The relativistic discriminator: a key element missing from standard GAN”). In 2019, she wrote one sole-author papers on GANs, entered the highly competitive Ph.D. program at MILA, and received the Borealis AI Fellowship. Her ultimate goal is to push GANs beyond their current capabilities so that one day we can generate media content (such as movies, music, video games, and comics) through artificial intelligence. Looking for a mentor or someone to mentor in the AI field? The new RE•WORK mentorship scheme aims to bring together those in the field looking for that exact thing. Read more on the initiative here.
Alicia is Co-Founder and Chief Technology Officer at OffWorld Inc. She brings over 15 years of experience in the aerospace industry developing and successfully launching systems for NASA, NOAA and the Telecommunications industry. In 2015, Alicia made the jump to New Space to work on cutting edge innovation programs. In her tenure at OffWorld, Alicia has led the development of AI based rugged robots that will be deployed in one of the most extreme environments on Earth as a precursor to swarm robotic space operations: deep underground mines. Alicia holds a MSc. and PhD from Stanford University and a BSc. in Theoretical Physics from UAM, Spain.
Franziska Meier is a research scientist at Facebook AI Research. Previously she was a research scientist at the Max-Planck Institute for Intelligent Systems and a postdoctoral researcher with Dieter Fox at the University of Washington, Seattle. On this weeks podcast, Franziska discusses her current works, challenges and what she has in store for 2020! Join leading women like Franziska at the Women in AI dinner in San Francisco in just two weeks time. You can read more on this here.
Dawn Song is a Professor in the Department of Electrical Engineering and Computer Science at UC Berkeley. Her research interest lies in deep learning, security, and blockchain. She has studied diverse security and privacy issues in computer systems and networks, including areas ranging from software security, networking security, distributed systems security, applied cryptography, blockchain and smart contracts, to the intersection of machine learning and security. Dawn will be joining us again in just over two weeks time at the RE•WORK San Francisco Summit. See more in Dawn's presentation and the summit as a whole here.
Dr Sarah Jarvis is a leading computer engineer and neuroscientist with a career founded on applying intelligent solutions to real-world problems. As Head of Data Science at PROWLER.io in Cambridge, she works with a global team of researchers and engineers in building PROWLER.io’s ground-breaking decision-making platform. We were delighted that Prowler both joined and sponsored our recent Women in AI dinner in London. Interested in attending a Women in AI dinner? See more here.
Lucie Luneau is the AI project manager at Kids Code Jeunesse (KCJ), a Canadian founded not-for-profit organization teaching coding skills to teachers and children. Lucie is also an instrumental part of KCJ's France-Canada team. Lucie holds a Master degree in Neuroscience from the University of Montreal. She nurtures a keen interest in designing exciting and accessible resources to give teachers and kids the skills to thrive in a technology-driven society. See our summit list here.
Don't miss our on the next Women in AI Dinners taking place in London and San Francisco next month!
Ashley Edwards is a research scientist at Uber AI Labs and recently obtained her PhD in computer science from Georgia Tech. Her research focuses on deep reinforcement learning, imitation learning, and model-based RL problems, with an emphasis on developing general goal representations that can be used across task environments. On this week's podcast, Ashley discusses her current work, goals for the future and challenges faced! Interested in joining fellow women breaking boundaries in STEM? You can save 25% until Friday 6th December with code CYBER25 on any RE•WORK Summit. See our summit list here - https://www.re-work.co/events
Emma Maconick is a partner in the Intellectual Property Transactions Group. She focuses on intellectual property, data protection, privacy and security issues for major technology clients engaged in data and innovation intensive activities. Emma has extensive experience with the IP, data and IT aspects of transactional matters including mergers & acquisitions, strategic alliances, joint ventures, capital markets transactions and corporate and financial investment. Emma also consults on IP litigation, with a focus on settlement agreements, coexistence agreements, cross-licenses and other arrangements for sharing IP rights in the technology content and telecommunications sectors. Emma frequently speaks and writes on cutting-edge issues in data protection, intellectual property and technology.
Shihui (Sophie) Chen is a Data Scientist at NASDAQ’s Machine Intelligence Lab, a group dedicated to leveraging AI to improve financial markets and solutions. Her previous projects covered alternative data research, risk management, portfolio construction, and optimization. She holds a Masters of Finance degree from MIT. Interested in meeting Women also working in Finance and FinTech? The Women in FinTech summit is coming to London in 2020. Read more on it here - https://www.re-work.co/events/women-in-fintech-london-2020
Viola Cao is a Data Scientist at Zurich North America. Viola joined us at the AI in Finance Summit in New York earlier this year to discuss Deep Learning for Property Visual Features and extraction tools. Viola graduated from NYU Data Science Masters programme with a focus on Machine Learning and Big Data. Having previously worked at Stanford University and the United Nations, we caught up with Viola to discuss her past works, future plans and where it all started. Interested in meeting women at the forefront of industry like Viola? Join us at one of our Women in AI dinners in 2020 in San Francisco, London, Boston and more. See the full list of dinners here - https://www.re-work.co/events
Julia Romero is the lead for Actuarial Engineering and Advanced Modeling at Haven Life, an online life insurance agency that’s backed and wholly owned by MassMutual. At Haven Life, Julia is focused on integrating and applying data science and other analytics models to drive innovation in actuarial technology. Julia joined us on our Women in AI podcast in New York to discuss her current works and what she is looking forward to in 2020!
Holder of a Ph.D. in Management Science (in risks and insurance management) from École Normale Supérieure de Cachan (France), Nathalie de Marcellis-Warin is Full Professor at Polytechnique Montreal, Department of Mathematics and Industrial Engineering. She is President and Chief Executive Officer at CIRANO, an interuniversity centre of research, liaison and transfer of knowledge on Public Policy and Risk Management. In this episode, Nathalie discussed her start in AI, where her passions comes from and current projects she is working on. Meet with fellow Women in STEM at one of our Women in AI Dinners which is returning to London on November 12th!
At Uber ATG R&D centre, Inmar is working on advanced state-of-the-art AI models for solving a large range of problems in self driving - perception and prediction, motion planning, mapping and localization, sensor simulation, and more. All that work is publicly available through academic conferences and venues, however, we wanted to get a little more info on some of her work which she explains in greater detail in this podcast! Meet with fellow Women in STEM at one of our Women in AI Dinners which is returning to London on November 12th!
Tola cites her story as a special one. Having initially been interested in maths and completing her degree at Queen Mary University of London earning a first-class degree, Tola went on to a career in Data Analytics, only later discovering Data Science when backpacking in Australia. Through conversations with a client when working her gap year, Tola was able to see that her degree in maths massively overlapped with the role of a Data Scientist. Tola further explains her journey in Data Science on this podcast, which was recorded at the Deep Learning Summit in London earlier this year. Meet with fellow Women in STEM at one of our Women in AI Dinners which is returning to London on November 12th!
Originally from India, Roshini started her AI journey by volunteering at the Indian Space Research organization and from there, found that her direction was headed for robotics. Having studied her masters degree at Edinburgh University, she graduated to work in a field that was very much still being built. Roshini is currently working at HSBC int he global banking and markets division, understanding business problems and translating them into Machine Learning projects. This podcast was recorded at the Deep Learning Summit in London 2019. Hear more from those at the forefront of the industry in Finance at the AI in Finance Summit in London next year. See more on the summit here - https://www.re-work.co/events/deep-learning-in-finance-summit-london-2020
Brigitte is Head of Product Impact at Google.org, where she leads initiatives that leverage emerging technologies and Google’s expertise to address global challenges. She is currently focused on how AI can be used for social impact through efforts like the $25M Google AI Impact Challenge. She previously lead programs focused on how technology can improve global education, innovation for people with disabilities, and crisis response.
Sarah is particularly interested in emerging technology’s impact on public policy, human well-being, and the economy. Motivated by both the potential benefits technology offers to governments and civil society, and concerns of fairness, accountability and inclusivity, she seeks to contribute to critical conversations surrounding the development and adoption of technology in public life.
As Director of AI for Humanity, Myriam's goal is to put into actions, Mila’s humanitarian mission in collaboration with both our partners of the local ecosystem and our international allies, by promoting an ethical and socially responsible usage of AI.
The typical translation devices for people who use ASL are gloves that aren't very accurate. The gloves tend to be inaccurate because the translation doesn't only come from peoples' hand gestures, it also comes from their body language, but the gloves don't account for that. However, the even bigger issue with these gloves is that many people can't afford them. Each glove is around $1,500. Katheriene helped create a translation device for people who use ASL. Katherine was part of the Rising Stars session at the Applied AI Summit in San Francisco, and we will be hosting similar sessions in London this September. Take a look at the event here to register and learn from the next generation of AI experts https://bit.ly/2R3Ik5L.
Wildlife poaching is a serious threat, and one of the largest illegal industries in the world. Historic data on ranger patrolling and detecting illegal poaching incidents can be leveraged to train ML models. Bistra is working on these predictive ML models for poaching risk and explains in this episode how they have been shown to effective in Field studies in 3 different protected areas.
Marvelous.ai is developing natural language tools to analyze political discourse in news and social media . Danielle is particularly focused on how messaging spreads, both negatively (propaganda) and positively (pro-democracy campaigns). In this interview, she chats with OMGitsfirefoxx about her approach to detecting political narratives utilizing human-in-the-loop alongside other natural language processing techniques, with examples focused on the 2020 US presidential election.
Kate Taylor, a high school student and AI4ALL project member is joining us today to share her work in this area. Kate presented her work in the area in our rising stars session in Boston earlier this year. AI4ALL is an amazing project encouraging the next generation of experts to explore all areas of AI. Ellie, from the RE•WORK team spoke with Kate about her presentation and some of the things she’s learned throughout her time at AI4ALL. Kate also shares some of the challenges she’s working on, as well as her long term goals.
Neva is the chief computational scientist at Aiden lab at Baylor College of Medicine where she creates analysis and visualisation software of assays exploring how DNA folds in three dimensions. Neva explains how although there have been some huge breakthroughs in healthcare with AI, the promised revolution in medicine is yet to come as there is still so much we don’t know about how DNA regulates cell function. Hear how Neva is working with Deep Learning to bring us closer to AI-powered medicine.
Artificial intelligence has the power to unlock the secrets of gene expression. Using deep learning, the wealth of genomic information that is being created can be understood and used to improve healthcare, drug discovery, and develop new cures. Gracelyn will talk about how deep learning can be used to analyze genetic data and demo her project related to predicting transcription factor-DNA binding. She will also talk about the implications of using deep learning to extract meaningful conclusions from genetic data and what it will mean for the future of the genomics industry.
CEO and Co-Founder of Affectiva joins us on the Podcast today to discuss her work in emotionally intelligent AI where we discuss how it can be used in a variety of areas such as treating people with autism, as well as there being commercial opportunities in social robotics and other areas. Rana was interviewed by Gracelyn Shi from the knowledge society, who asked some fantastic questions about some of Rana’s goals, challenges, ethical concerns, and how she’s inspiring women in AI.
Welcome to season 2 of the podcast, AI for Good.
In this episode, Gracelyn Shi from The Knowledge Society spoke with Alice Xiang from the Partnership on AI who is working as a research scientist in the areas of fairness, transparency, and accountability in AI.
In recent years, we are becoming more conscious of our eating habits and our health, and with the help of personalised health platforms, we are able to better monitor our diet, which in turn better our wellbeing. Amice is currently working on her app, eatrite, a personalised food recommendation platform, which, through AI and machine learning algorithms, identifies the dishes on the menu and provides the user with the nutritional value that the dish would provide. This way, users are able to make a better choice when opting for their meal.
Martha’s primary research goal is to develop techniques for adaptive autonomous systems that learn on streams of data with an applied focus on computational sustainability. She focuses on reinforcement learning and representation learning to achieve this goal. In particular, Martha cares about efficient, practical algorithms that enable learning from large amounts of data. Areas of expertise: algorithms & theory, artificial intelligence, machine learning, reinforcement learning.
Vielka is working on supporting underserved students towards their goal of graduation with little debt. At Bridge to College, Vielka is aiming to match students to colleges that will fund and graduate them on-time. In this episode of the podcast, we spoke about her work in education and her journey into AI.
Viola works to create an enriched experience in education and has been doing this in various ways for over 12 years. Viola also won the “Entrepreneur of the Year 2015” award of the Youth Business International, which is one of the world's most honorific awards for young entrepreneurs in over 68 countries. In this episode of the podcast, we spoke about her work as a social entrepreneur and her journey into AI as well as the current landscape of AI in Hong Kong.
Deep learning has enabled significant advances in a variety of domains; however, it relies heavily on large labeled datasets. Chelsea explains how we can use meta-learning, or learning to learn, to enable us to adapt deep models to new tasks with tiny amounts of data, by leveraging data from other tasks.
Jessi has been working in lobbying, policy, communications, reputation and crisis for over a decade. During that time, she has worked for political parties, businesses (start-up to FTSE 100), consultancies, think tanks and NGOs. Her particular area of expertise is highly regulated, highly politicised, technology-driven sectors, including telecoms, energy, and Fintech. She was previously a capital markets solicitor at City firm Linklaters, after graduating from Oxford and subsequently the LSE.
Maroussia works at the crossroads of law and technology. She has a background in interactive arts, having lead interdisciplinary teams at the Obx lab for experimental media within the Hexagram research-creation institute. She was called to the Bar in 2013 and clerked for the Chief Justice at the Quebec Court of Appeal, Canada. She participated in the inquiry commission on the protection of journalists’ sources, investigating law enforcement’s electronic surveillance practices. More recently, she researched AI and human rights at the Digital Inclusion Lab within Global Affairs Canada. She is a member of IEEE’s working group on algorithmic bias.
Giewee has an extensive mathematics background which she uses to resolve complex problems for Upstream E&P. She is a Lead Data Scientist for her division and has strategized and filled the need for constructing a productive advanced data analytics team to meet the demands of upstream advanced data analytics projects. She lectures and participates in Houston Data Analytics, a meetup which she founded in January 2018. She highly values the importance of data preprocessing, data exploration, model validation and model interpretation. She holds the following master degrees: Actuarial Science and Analytics.
Conversational systems like Siri and Google Assistant have been around for several years now; and have recently started to play increasingly ubiquitous roles in people's daily lives, through smart home devices, phones, or social media (like Messenger). Despite this, the conversational experience that these systems provide has evolved only incrementally. At the same time, however, interest in conversational AI from the research community is growing fast, and there’s more potential than ever for using machine learning to power these systems.
Even if you’re not completely clued up on the technicalities of machine learning, you’ve most probably heard of or use Netflix. This means that you’re interacting with a whole myriad of ML every time you use the platform. Julie leads the Machine Learning Infrastructure at Netflix, with the goal of scaling Data Science while increasing innovation. She previously built streaming infrastructure behind the “play” button while Netflix was transitioning from domestic DVD-by-mail service to international streaming service.
Londa is the John L. Hinds Professor of History of Science at Stanford University and directs the EU/US Gendered Innovations in Science, Health & Medicine, Engineering, and Environment project. She is a leading international expert on gender in science and technology and has addressed the United Nations on the topic of “Gender, Science, and Technology.” She is an elected member of the American Academy of Arts and Sciences and the recipient of numerous prizes and awards, including the prestigious Alexander von Humboldt Research Prize and Guggenheim Fellowship. Her work on Gendered Innovations harnesses the creative power of sex and gender analysis to enhance excellence and reproducibility in science and technology.
Anna Bethke is the Head of AI for Social Good of Intel's Artificial Intelligence Products Group where she is establishing partnerships with social impact organizations; enabling their missions with Intel's technologies and AI expertise. She is also actively involved in the AI Ethics discussion, collaborating on research surrounding the design of fair, transparent, ethical, and accessible AI systems.
Deborah, writer at Microsoft, is one of the original architects of the personality for Microsoft’s Cotrana. She crafted the core principles that define Cortana's approach to communication and now helps shepherd those principles as Cortana lights up on other devices, on other operating systems, and in other countries. Today, while the field of AI is still in adolescence, the industry stand in a brilliant position to shape not only technological innovation but also the culture of conversation between humans and machines.
Do our current crop of AI Assistants really use AI? If not, are they still useful? We'll look at the current state of AI Assistants, the challenges of building them, and speculate on what the future might bring. Learn from Cathy, Head of Conversation Design Outreach at Google, and the author of the O'Reilly book, "Designing Voice User Interfaces".
Today AI is being created by a very homogeneous set of people. Not only it is homogeneous in terms of race and color but also in terms of academic backgrounds. Himani explains that she is a very unlikely researcher to become an AI engineer but it is crucial so that AI created by heterogenous set of people is more fair and inclusive.
Hear from Founder & CEO of VineSeluth, Amy Gross, how they use sensory science and apply it to wines to build artificial intelligence-powered learning algorithms for the food and beverage industry. These personal preference learning algorithms and their results can be integrated into client websites, in-store kiosks and applications to hyper-personalize the shopping experience and guide marketing initiatives, increasing sales and reducing waste for the industry.
As Project Manager, Julia is responsible for the research and development of humanoid robotic (Robonaut) and autonomous system capabilities, on the Earth, the International Space Station, and for future exploration, that include dexterous manipulation, autonomous spacecraft control and caretaking, and human-robot interfaces. Julia has a BS from Purdue University, and an MS and PhD from the California Institute of Technology, all in Mechanical Engineering.
Eunice is the founder at DataGig, a digital apprenticeship marketplace that helps connect aspiring data scientists with potential employers for their big data and analytics projects on-demand. Eunice strongly believes in building the next generation of women and minorities in the tech industries.
Laurence joined the Flatiron Institute in September 2018 as member of the CCA. Prior to this, she was a KIPAC postdoctoral fellow at Stanford University, where she conducted research in applications of machine learning methods to cosmology. Laurence completed her PhD degree at the University of Cambridge in DAMTP, where she worked on applications of open effective field theory methods to the formalism of inflation. She received her B.Sc. and M.Sc. degrees from McGill University.
Advances in natural language processing (NLP) are increasingly eroding the barriers between frictionless human-machine interaction, creating opportunities to develop nuanced and natural communication techniques that more accurately convey person-to-person dialogue. In this episode, Margaret discussed how convolutional neural networks and long short-term memory networks are enabling more sophisticated NLP systems and building the necessary components to lay the foundation for advanced dialogue.
Data & Trust Working Group is part of the AI Global Governance Network of Task Forces. Gosia joins us to explain how AI can compute an enormous amount of data helping us understand our own behavioural patterns. We need data sets to train AI to be able to do it.
At the Deep Learning Summit in Toronto earlier this year, we were fortunate enough to be joined by both Sara and Natacha from Google Brain for an exclusive fireside chat. Hear about Sara’s breakthrough work, as well as her journey in AI and Deep Learning.
As we know, deep learning is transforming every industry it touches, but it can be challenging for not only small enterprises, but companies of all shapes and sizes to know where to start and how to apply AI to help optimise their work and save money. Speaking at the Deep Learning Summit in Toronto earlier this month, it was great to chat to Mai to hear how Sightline Innovation’s work has progressed over the last year and to chat about some of the new projects they’re working on.
Yolanda is an AI Policy Researcher at The AI Initiative of The Future Society, a think-and-do-tank incubated at Harvard Kennedy School of Government. Her research focuses on governance and policy to shape the rise of AI to benefit society broadly while mitigating societal risks, including algorithmic bias, fairness, privacy, cybersecurity, safety, and impact on employment and inclusion.
Neural networks have recently been applied to many biological problems, including drug discovery. Applications of DNNs combined with domain expertise can help design de novo druglike compounds and generate large virtual chemical libraries, which can be more efficiently screened for in silico drug discovery purposes. Polina describes aspects of applications of deep adversarial networks and reinforcement learning for molecular de novo design.
Jade is a researcher with the Governance of Artificial Intelligence Program (GovAI) at the Future of Humanity Institute (University of Oxford). Her research focuses on the governance of emerging dual-use technologies, with a specific focus on firm-government relations in the US and China with respect to advanced artificial intelligence. Jade has a background in engineering, international law, and policy design and evaluation.
Mining and analyzing text helps organizations find valuable business insights in corporate data. Too often we find the common text mining techniques are not effective in many real-world corporate settings, in particular when dealing with short snippets, boilerplate text collected in forms and repeated text due to cut and paste authoring. Learn more from Yvonne Li on this week's episode of the podcast.
At the AI in Finance Summit in New York earlier this Autumn, Eunice caught up with one of our speakers, Peggy Tsai. Peggy is Vice President in the Analytics & Data department at Morgan Stanley Wealth Management and is responsible for leading the adoption of Data Governance standards and processes across Wealth Management. Hear what they had to discuss on the podcast.
On this week’s episode, Maithra, PhD Candidate and research scientist at Google Brain discusses her work in the science of Deep Learning. Eunice from the RE•WORK team chats with Maithra about the applications of her current work and how Google Brain are using neural networks in diagnostics, as well as to predict which instances are likely to give rise to maximal expert disagreement in healthcare.
The constant progress of AI leaves society split - some fall into the bracket of excitement, and others are more wary. Whilst these technologies have the potential to transform all industries with a positive effect, we must consider the ramifications if they are not build securely, and with ethical considerations. Mariarosaria joins us to discuss her work in philosophy and ethics at the intersection of AI to share her work in ensuring AI is created with ethics as a priority.
The life insurance industry faces a number of challenges: long-term liabilities that can span decades, outdated legacy infrastructure that limits the potential for innovation, and strict regulations that protect consumers but make quick iteration very difficult. At Haven Life and MassMutual, Laura is using algorithms and machine learning models to streamline the customer experience for policy purchases.
Where am I, and where am I going, and where have I been before? Answering these questions requires cognitive navigation skills--fundamental skills which are employed by every intelligent biological species to find food, evade predators, and return home. On this week's episode of the Podcast, Raia Hadsell discusses her work at DeepMind.
On this week's episode of the podcast we catch up with Global Summit Creator, Ellie Lucy, to hear how she plans her agendas, sources global AI experts, and creates sessions focusing on the most cutting edge work in AI.
We are living in an exciting time where Machine Learning theory for common applications is maturing, open source tools are plenty, and computation is cheap. While this enables us to move faster than ever, it also makes it easy to throw latest technology at any given problem with little preparation. This can lead to overly complex solutions, suboptimal processes, and waste time. In this talk I’ll draw examples from real applications to show the necessity of spending time on defining the problem accurately before diving for solutions.
You only need to open a magazine to be faced with dieting tips and tricks to get in shape, and we’re bombarded with so much contradictory information on how to get the ‘perfect body’ that there’s no wonder it can be overwhelming. Hear from Laura Douglas, Co-Founder at MyLevels is working with her team to overcome this with AI.
Clothes shopping is some people’s idea of a relaxing afternoon well spend, whilst for others it’s a bit of a nightmare. On this episode I'm joined by Sowmiya Chocka Naraynan, Co-Founder and CTO of Lily AI, the first product to use deep emotional intelligence and AI in the commerce market to decode a woman’s emotional and perceptive needs to highlight or draw away from certain parts of the body to help you find the perfect outfit.
Georgia Gkioxari is a research scientist at Facebook AI Research (FAIR). She received a PhD in computer science and electrical engineering from the University of California at Berkeley under the supervision of Jitendra Malik in 2016. Learn about her career in AI as well as her current work.
Advances in robot navigation and fetch and delivery tasks rest to a large extent on robust, efficient and scalable semantic understanding of the surrounding environment. I’m joined today by Jana Kosecka from George Mason University and Google where she’s working on exactly this. Jana is using deep learning to fuel rapid progress in this area to help label data and analyse images, so I’m really excited to learn more about her work in robotics.
Finding out whether you’re eligible for disability allowance or to be officially registered as having a disability can be a long process, and one that many patients can’t afford to wait for. Recent progressions in NLP have made it possible to speed up this process by identifying disability mentions in text in both medical specialists’ notes and patients’. Learn from Ayah Zirikly from NIH in this week's episode.
Tasha specialises in biologically inspired neural networks, and puts a special emphasis on NLP using clinical text and heads up the AI team to develop state of the art tech that actually understands a doctors thought process through natural language understanding.
Despite the amount of data collected, the healthcare industry as a whole is overwhelmed by the challenges in understanding the information to transform research prototypes into real-world healthcare solutions. IBM Watson Health are working to bring together end-to-end machine learning solutions in healthcare into hospitals and general practice, learn more from Rachita.
Cansu works on ethics of technology and population-level bioethics with an interest in policy questions. Prior to the AI Ethics Lab, she was a lecturer at the University of Hong Kong, and a researcher at the Harvard Law School. Learn more on this week's episode of the podcast.
On this week's episode Sergul, ML Scientist at Amazon discusses her work in neural networks for forecast demand. Hear about how Amazon ensure they have the right quantities of each product to maximise customer experience.
Recent approaches in generative adversarial networks (GANs) can automatically synthesize realistic images from descriptive text. Despite the overall fair quality, the generated images often expose visible flaws that lack structural definition for an object of interest. Miriam joins us today to discuss some of her work to improve this.
This week we’ll be taking another look at AI in finance, and today’s guest is Soledad Galli from LV. So what comes to mind when you think of AI in Finance? Fraud Detection? Algorithmic Trading? These areas are constantly in the news, and AI has already undoubtedly made huge contributions to the efficiency and accuracy of many financial practices, but there are also lots of new ways that AI is being implemented to alter traditional methods within retail and commercial banking, insurance and many more industries.
Recently, at the Deep Learning in Finance Summit in London, Huma Lodhi from Direct Line Group joined us to present her work and explained how deep learning based AI models are showing incredible results for complex problems in both banking and insurance. When you think about all the data in these industries it makes sense that deep learning could be highly effective here, and today Huma chats with us about learning representations from disparate data, like free-from text and structured categorical and numeric data in insurance.
With faster internet and better connectivity, online information has taken a shift from being text-based to visual media such as photos. I’m going to be chatting with Merve Alanyali, PhD Researcher and Academic Assistant at Warwick Business School and The Turing Institute to hear how she’s using these vast amounts of data to quantify human behaviour. Merve’s research focuses on analysing large open data sources with concepts from image processing and machine learning to understand and predict human behaviour on a global scale.
On this week's episode of Women in AI Podcast, we're joined by Kat James, Senior Data Scientist at Royal Mail, who explains how recommender systems help them deliver the 50 million letters across the UK 6 days a week.
How should we consider the societal impact of AI from conception to production? Catherine, Senior Lecturer in Computing and Social Responsibility at De Montfort University shares her work in social responsibilities when creating AI. Learn about bias, ethics & more.
Honglei joins us today to discuss how AI is transforming retail in various areas such as computer vision and pattern recognition for image detection and classification. Honglei Li is currently a senior lecturer in Enterprise Information Systems at Department of Computing & Information Sciences, Northumbria University.
Today, we chat with Ann about her work in NLP and conversational speech recognition as well as her current role as Voice UI/UX Design Leader at Sound United. While doing a PhD in Cognitive Science and Linguistics at UCSD, Ann's interest in phonetics and NLP led to a dissertation using neural networks to model how speakers of a language form new words via paradigm patterning and token analogy.
AI assistants are making a huge impact in healthcare, and another really exciting company that have created a virtual assistant is Sense.ly, whose virtual nurse avatar, Molly, helps people engage with their health. Today i’m going to be chatting to their VP of user experience, Cathy Pearl to hear more about how Molly helps patients. Cathy as worked on everything from helicopter pilot simulators at NASA to a conversational iPad app in which Esquire magazine’s style columnist tells you what you should wear on a first date.
Depression is the leading cause of disability globally, and the cost of mental illness to society has doubled in the last 10 years in every region of the world. Alison Darcy, CEO and Founder of Woebot Labs is joining me today to discuss her work in addressing the mental health crisis with a chatbot that delivers cognitive behaviour therapy.
Is Deep Learning just a field of technical research that won’t affect the general public? Absolutely not - we’ve not seen such a powerful and disruptive technology since the inception of the internet itself - deep learning is transforming every industry it touches from finance to healthcare, self driving cars to smart cities. Mai joins us today to discuss the importance of making the application of deep learning accessible and hassle free for businesses. Even when a business understands the importance of AI and the impact it can have in industry, it’s hard to know where to start and how to afford the relevant staff and technologies.
On this episode, Zeynep from the University of Amsterdam and the Max Planck shares her expertise exploring zero-shot learning as a method to scale up visual category recognition as well talking about discovering and synthesizing novel concepts with minimal supervision.
Anne Hsu, Assistant Professor at University of London, joins us to discuss the progression and importance of creating psychologically aware AI. These models can understand users’ motivations and provide empathetic dialogues to help create more meaningful and engaging conversations.
In this episode, Noura discusses her work in unsupervised deep learning as well as NLP and optimisation. As Yann LeCun said recently, unsupervised learning is the ‘holy grail’ of AI research as it allows machines to replicate the way humans learn, and we discuss Noura's progressions in unsupervised learning...
However useful AI assistants are, they’re still not perfect. They’re designed to serve us through dialogue, but to be effective they must not only understand natural language, but be able to generate sentences that communicate back in a human-like manner. Layla El Asri from Maluuba, a Canadian AI company teaching machines to think, reason, and communicate with humans joins us on this episode to discuss her work leading a team to improve natural language understanding in these assistants.
In this episode, Doina shares her journey to where she is today in AI, as well as discussing her work at McGill University, and the exciting projects she's involved in at DeepMind Montreal. The landscape of AI in Montreal is rapidly advancing, and we discuss progressions, obstacles, and current research that Doina is working on.
This week Ira Kemelmacher, assistant professor at Allen School of Computer Science and Research Scientist at Facebook joins us to discuss her current work in computer vision. If you open up your internet browser and search for a singing cat or a talking baby, you’ll find edited examples that create the illusion of real speech. These videos provide immense entertainment, but is these a useful application of this?
Understanding public opinion is important in many applications, such as improving company's product or service, marketing research, recommendation systems, decision and policy making and even predicting results of elections. Social media is a very powerful tool to transfer information and express emotions for users and a rich source of data that enables researchers to mine public opinion, but social media is a breeding ground for rumours that get miscommunicated into fact - how can we use AI to help eliminate this?
Antonia is a PhD candidate at Imperial College London, in the Bio-Inspired Computer Vision Group. Her research focuses on unsupervised learning and generative models. She received her masters in Biomedical Engineering from Imperial College London with an exchange year at the University of California, Davis. Antonia has interned at Twitter (Magic Pony), Cortexica and UNMADE. In this episode we discuss the implementation of generative modelling to synthesise new data samples, and the challenges faced in this work.
Nikita Johnson, founder and CEO of RE•WORK discusses the motivation behind the Women in AI series. The episode touches on how she came to found the AI events company, and shares some exciting insights of the upcoming Deep Learning Summit and AI Assistants Summit in London, highlighting some of the influential women who will be sharing their research at the event.